Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118236, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670405

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chang-Kang-Fang (CKF), originated from traditional Chinese medicine (TCM) formulas, has been utilized to treat diarrhea predominant irritable bowel syndrome (IBS-D) based on clinical experience. However, the underlying mechanism of CKF for treating IBS-D remains unclear and need further clarification. AIM OF THE STUDY: The objective of this present investigation was to validate the efficacy of CKF on IBS-D model rats and to uncover its potential mechanism for the treatment of IBS-D. MATERIALS AND METHODS: We first established the IBS-D rat model through neonatal maternal separation (NMS) in combination with restraint stress (RS) and the administration of senna decoction via gavage. To confirm the therapeutic effect of CKF on treating IBS-D, abdominal withdrawal reflex (AWR) scores, the quantity of fecal pellets, and the fecal water content (FWC) were measured to evaluate the influence of CKF on visceral hypersensitivity and the severity of diarrhea symptom after the intragastric administration of CKF for 14 days. Subsequently, enzyme linked immunosorbent assay (ELISA) was applied to assess the effect of CKF on neuropeptides substance P (SP) and 5-hydroxytryptamine (5-HT), as well as inflammatory cytokines in serum and in intestinal tissues. Further, colonic pathological changes, the amount of colonic mast cells, and the expression level of occludin in rat colon tissues, were investigated by hematoxylin-eosin (HE) staining, toluidine blue staining, and immunohistochemistry, respectively. To explore the underlying mechanisms, alterations in colonic RNA transcriptomics for the normal, model, and CKF treatment groups were assessed using RNA sequencing (RNA-Seq). Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunofluorescence (IF) assays were applied to validate the effect of CKF on predicted pathways in vivo and in vitro. In addition, to elucidate the potential active compounds in CKF, 11 representative components found in CKF were selected, and their anti-inflammation potentials were evaluated using LPS-treated RAW264.7 cell models. RESULTS: CKF treatment significantly reduced the number of fecal pellets, attenuated visceral hypersensitivity, and decreased 5-HT and SP concentrations in serum and colon tissues, along with a reduction in colonic mast cell counts, correlating with improved symptoms in IBS-D rats. Meanwhile, CKF treatment reduced the colonic inflammatory cell infiltration, lowered the levels of IL-6, TNF-α, and IL-1ß in serum and colon tissues, and increased the occludin protein expression in colon tissues to improve inflammatory response and colonic barrier function. RNA-Seq, in conjugation with our previous network pharmacology analysis, indicated that CKF might mitigate the symptoms of IBS-D rats by inhibiting the Toll like receptor 4/Nuclear factor kappa-B/NLR family pyrin domain-containing protein 3 (TLR4/NF-κB/NLRP3) pathway, which was confirmed by WB, IF, and qRT-PCR experiments in vivo and in vitro. Furthermore, coptisine, berberine, hyperoside, epicatechin, and gallic acid present in CKF emerged as potential active components for treating IBS-D, as they demonstrated in vitro anti-inflammatory effects. CONCLUSION: Our findings demonstrate that CKF effectively improves the symptoms of IBS-D rats, potentially through the inhibition of the TLR4/NF-κB/NLRP3 pathway. Moreover, this study unveils the potential bioactive components in CKF that could be applied in the treatment of IBS-D.


Assuntos
Diarreia , Medicamentos de Ervas Chinesas , Síndrome do Intestino Irritável , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Diarreia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Ratos , Modelos Animais de Doenças , Feminino , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia
2.
J Nat Prod ; 86(8): 1919-1930, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37368370

RESUMO

Repetitive isolation of known compounds remains a major challenge in natural-product-based drug discovery. LC-MS/MS-based molecular networking has become a highly efficient strategy for the discovery of new natural products from complex mixtures. Herein, we report a molecular networking-guided isolation procedure, which resulted in the discovery of seven new cyclopentapeptides, namely, pseudoviridinutans A-F (1-7), from the marine-derived fungus Aspergillus pseudoviridinutans TW58-5. Compounds 1-7 feature a rare amino acid moiety, O,ß-dimethyltyrosine, observed for the first time from a marine-derived fungus. The planar structures of 1-7 were elucidated by detailed analyses of IR, UV, HR ESI-Q-TOF MS, and 1D and 2D NMR spectroscopic data. Meanwhile, their absolute configurations were determined through a combination of Marfey's method and X-ray diffraction. Subsequent bioassay revealed the anti-inflammation potential of 1-7, especially 6, which inhibited the production of nitric oxide (NO), a vital inflammatory mediator, in LPS-induced murine macrophage RAW264.7 cells by regulating the expression level of NLRP3 and iNOS.


Assuntos
Fontes Hidrotermais , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fungos , Anti-Inflamatórios/química , Estrutura Molecular
3.
Br J Pharmacol ; 180(15): 1930-1948, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36788033

RESUMO

BACKGROUND AND PURPOSE: Chronic inflammation is pathogenic and contributes to human diseases, causing a significant threat to public health. The NLR family pyrin domain-containing protein 3 (NLRP3) is the best-characterized factor regulating inflammation. Therefore, targeting NLRP3 has the potential to treat inflammatory diseases and improve human health. EXPERIMENTAL APPROACH: Lipopolysaccharide was used to induce inflammation in cell cultures. Lipopolysaccharide/d-galactosamine and dextran sulfate sodium salt were used to induce acute liver inflammation and ulcerative colitis respectively in C57BL/6J mice. Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the activation of the inflammatory response in cell cultures and in mice. KEY RESULTS: JNUTS013, a novel sorbicillinoid compound recently synthesized by us, significantly inhibited inflammation both in cell cultures and in mouse models. Mechanistically, JNUTS013 induced proteasome-dependent degradation of NLRP3. Hence, it suppressed the formation of the NLRP3 inflammasome and the production of downstream inflammatory cytokines and chemokines. The inhibitory effect of JNUTS013 on NLRP3 protein expression was confirmed in mice. Importantly, JNUTS013 failed to ameliorate bowel inflammation in Nlrp3-/- knockout mice, supporting NLRP3 as the biological target by which JNUTS013 inhibits inflammation. Further studies revealed critical chemical moieties of JNUTS013 required for inducing NLRP3 degradation. CONCLUSION AND IMPLICATIONS: This study identifies a novel compound JNUTS013 that inhibits inflammation through inducing NLRP3 protein degradation in vitro and in vivo, which not only supports the development of JNUTS013 as an anti-inflammation agent but also creates a new way for the treatment of inflammation by chemically inducing NLRP3 degradation.


Assuntos
Colite , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Sulfato de Dextrana , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...